156 research outputs found

    Gas Mass Fractions and the Evolution of LSB Dwarf Galaxies

    Get PDF
    The optical and HI properties for a sample of low surface brightness (LSB) dwarf galaxies, cataloged from the Second Palomar Sky Survey, is presented. Gas mass fractions for LSB dwarfs reach the highest levels of any know galaxy type (f_g=95%) confirming that their low stellar densities are due to inefficient conversion of gas mass into stellar mass. Comparison with star formation models indicates that the blue optical colors of LSB dwarfs is not due to low metallicity or recent star formation and can only be explained by a dominant stellar population that is less than 5 Gyrs in mean age. If star formation occurs in OB complexes, similar to normal galaxies, then LSB dwarfs must undergo weak bursts traveling over the extent of the galaxy to maintain their LSB nature, which contributes to their irregular morphological appearance.Comment: 23 pages AAS LaTeX, 7 figures, accepted for publication in A

    The ionized gas at the center of IC 10: A possible localized chemical pollution by Wolf-Rayet stars

    Full text link
    We present results from integral field spectroscopy with the Potsdam Multi-Aperture Spectrograph at the 3.5m telescope at Calar Alto Observatory of the intense star-forming region [HL90] 111 at the center of the starburst galaxy IC 10. We have obtained maps with a spatial sampling of 1" x 1" = 3.9 pc x 3.9 pc of different emission lines and analyzed the extinction, physical conditions, nature of the ionization, and chemical abundances of the ionized gas, as well determined locally the age of the most recent star-formation event. By defining several apertures, we study the main integrated properties of some regions within [HL90] 111. Two contiguous spaxels show an unambiguous detection of the broad He II 4686 emission line, this feature seems to be produced by a single WNL star. We also report a probable N and He enrichment in the precise spaxels where the WR features are detected. The enrichment pattern is roughly consistent with that expected for the pollution of the ejecta of a single or a very small number of WR stars. Furthermore, this chemical pollution is very localized (~2"~7.8 pc) and it should be difficult to detect in star-forming galaxies beyond the Local Volume. We also discuss the use of the most-common empirical calibrations to estimate the oxygen abundances of the ionized gas in nearby galaxies from 2D spectroscopic data. The ionization degree of the gas plays an important role when applying these empirical methods, as they tend to give lower oxygen abundances with increasing ionization degree.Comment: 18 pages, 13 figures, accepted for publication in MNRA

    The Herschel Virgo Cluster Survey. IX. Dust-to-gas mass ratio and metallicity gradients in four Virgo spiral galaxies

    Get PDF
    Using Herschel data from the Open Time Key Project the Herschel Virgo Cluster Survey (HeViCS), we investigated the relationship between the metallicity gradients expressed by metal abundances in the gas phase as traced by the chemical composition of HII regions, and in the solid phase, as traced by the dust-to-gas mass ratio. We derived the radial gradient of the dust-to-gas mass ratio for all galaxies observed by HeViCS whose metallicity gradients are available in the literature. They are all late type Sbc galaxies, namely NGC4254, NGC4303, NGC4321, and NGC4501. We examined different dependencies on metallicity of the CO-to-H2_2 conversion factor (\xco), used to transform the 12^{12}CO observations into the amount of molecular hydrogen. We found that in these galaxies the dust-to-gas mass ratio radial profile is extremely sensitive to choice of the \xco\ value, since the molecular gas is the dominant component in the inner parts. We found that for three galaxies of our sample, namely NGC4254, NGC4321, and NGC4501, the slopes of the oxygen and of the dust-to-gas radial gradients agree up to \sim0.6-0.7R25_{25} using \xco\ values in the range 1/3-1/2 Galactic \xco. For NGC4303 a lower value of \xco0.1×\sim0.1\times 1020^{20} is necessary. We suggest that such low \xco\ values might be due to a metallicity dependence of \xco (from close to linear for NGC4254, NGC4321, and NGC4501 to superlinear for NGC4303), especially in the radial regions RG<_G<0.6-0.7R25_{25} where the molecular gas dominates. On the other hand, the outer regions, where the atomic gas component is dominant, are less affected by the choice of \xco, and thus we cannot put constraints on its value.Comment: 13 pages, 8 figures, A&A accepte

    On the frequency, intensity and duration of starburst episodes triggered by galaxy interactions and mergers

    Full text link
    We investigate the intensity enhancement and the duration of starburst episodes, triggered by major galaxy interactions and mergers. To this aim, we analyze two large statistical datasets of numerical simulations. These have been obtained using two independent and different numerical techniques to model baryonic and dark matter evolution, that are extensively compared for the first time. One is a Tree-SPH code, the other one is a grid-based N-body sticky-particles code. We show that, at low redshift, galaxy interactions and mergers in general trigger only moderate star formation enhancements. Strong starbursts where the star formation rate is increased by a factor larger than 5 are rare and found only in about 15% of major galaxy interactions and mergers. Merger-driven starbursts are also rather short-lived, with a typical duration of the activity of a few 10^8 yr. These conclusions are found to be robust, independent from the numerical techniques and star formation models. At higher redshifts where galaxies contain more gas, gas inflow-induced starbursts are neither stronger neither longer than their local counterparts. In turn, the formation of massive gas clumps, results of local Jeans instability that can occur spontaneously in gas-rich disks or be indirectly favored by galaxy interactions, could play a more important role in determining the duration and intensity of star formation episodes.Comment: 22 pages, 28 figures, A&A accepted. High resolution version available at http://aramis.obspm.fr/~paola/SFR_frequency

    Star forming dwarf galaxies

    Full text link
    Star forming dwarf galaxies (SFDGs) have a high gas content and low metallicities, reminiscent of the basic entities in hierarchical galaxy formation scenarios. In the young universe they probably also played a major role in the cosmic reionization. Their abundant presence in the local volume and their youthful character make them ideal objects for detailed studies of the initial stellar mass function (IMF), fundamental star formation processes and its feedback to the interstellar medium. Occasionally we witness SFDGs involved in extreme starbursts, giving rise to strongly elevated production of super star clusters and global superwinds, mechanisms yet to be explored in more detail. SFDGs is the initial state of all dwarf galaxies and the relation to the environment provides us with a key to how different types of dwarf galaxies are emerging. In this review we will put the emphasis on the exotic starburst phase, as it seems less important for present day galaxy evolution but perhaps fundamental in the initial phase of galaxy formation.Comment: To appear in JENAM Symposium "Dwarf Galaxies: Keys to Galaxy Formation and Evolution", P. Papaderos, G. Hensler, S. Recchi (eds.). Lisbon, September 2010, Springer Verlag, in pres

    Inflation, cold dark matter, and the central density problem

    Full text link
    A problem with high central densities in dark halos has arisen in the context of LCDM cosmologies with scale-invariant initial power spectra. Although n=1 is often justified by appealing to the inflation scenario, inflationary models with mild deviations from scale-invariance are not uncommon and models with significant running of the spectral index are plausible. Even mild deviations from scale-invariance can be important because halo collapse times and densities depend on the relative amount of small-scale power. We choose several popular models of inflation and work out the ramifications for galaxy central densities. For each model, we calculate its COBE-normalized power spectrum and deduce the implied halo densities using a semi-analytic method calibrated against N-body simulations. We compare our predictions to a sample of dark matter-dominated galaxies using a non-parametric measure of the density. While standard n=1, LCDM halos are overdense by a factor of 6, several of our example inflation+CDM models predict halo densities well within the range preferred by observations. We also show how the presence of massive (0.5 eV) neutrinos may help to alleviate the central density problem even with n=1. We conclude that galaxy central densities may not be as problematic for the CDM paradigm as is sometimes assumed: rather than telling us something about the nature of the dark matter, galaxy rotation curves may be telling us something about inflation and/or neutrinos. An important test of this idea will be an eventual consensus on the value of sigma_8, the rms overdensity on the scale 8 h^-1 Mpc. Our successful models have values of sigma_8 approximately 0.75, which is within the range of recent determinations. Finally, models with n>1 (or sigma_8 > 1) are highly disfavored.Comment: 13 pages, 6 figures. Minor changes made to reflect referee's Comments, error in Eq. (18) corrected, references updated and corrected, conclusions unchanged. Version accepted for publication in Phys. Rev. D, scheduled for 15 August 200

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    Global Emission Line Trends in Spiral Galaxies: The Reddening and Metallicity Sequences

    Full text link
    We have explored the emission line trends in the integrated spectra of normal spiral galaxies of the Nearby Field Galaxy Survey, in order to investigate the relationships between dust extinction, metallicity and some macroscopic properties of spiral galaxies. We found a very strong correlation between the Hbeta and Halpha equivalent widths, implying that the difference between the extinction of the stellar and the nebular light depends only on the intrinsic colours of the galaxies, being larger for redder galaxies. The usual metallicity indicator for giant HII regions ([OIII]4959,5007 + [OII]3726,3729)/ Hbeta is not appropriate for integrated spectra of spiral galaxies, probably due to metallicity gradients. Much better qualitative metallicity indicators are found to be [NII]6584/[OII]3726,3729 and [NII]6584/Halpha, the latter having the advantage of being independent of reddening and being applicable also for galaxies with weak emission lines. With these indicators, we find that the nebular extinction as derived from the Balmer decrement strongly correlates with the effective metallicity of the emission line regions. The overall metallicity of the emission line regions is much better correlated with galaxy colours than with morphological types. A Principal Component Analysis on a 7-D parameter space showed that the variance is produced, in first place, by the metallicity and parameters linked to the stellar populations, and, in second place, by the surface brightness, which is linked to the dynamical history of the galaxies. The absolute magnitude, related to the mass of the galaxy, comes only in the third place.Comment: 13 pages; to appear in A&

    Preventing intrusive memories after trauma via a brief intervention involving Tetris computer game play in the emergency department: a proof-of-concept randomized controlled trial.

    Get PDF
    After psychological trauma, recurrent intrusive visual memories may be distressing and disruptive. Preventive interventions post trauma are lacking. Here we test a behavioural intervention after real-life trauma derived from cognitive neuroscience. We hypothesized that intrusive memories would be significantly reduced in number by an intervention involving a computer game with high visuospatial demands (Tetris), via disrupting consolidation of sensory elements of trauma memory. The Tetris-based intervention (trauma memory reminder cue plus c. 20 min game play) vs attention-placebo control (written activity log for same duration) were both delivered in an emergency department within 6 h of a motor vehicle accident. The randomized controlled trial compared the impact on the number of intrusive trauma memories in the subsequent week (primary outcome). Results vindicated the efficacy of the Tetris-based intervention compared with the control condition: there were fewer intrusive memories overall, and time-series analyses showed that intrusion incidence declined more quickly. There were convergent findings on a measure of clinical post-trauma intrusion symptoms at 1 week, but not on other symptom clusters or at 1 month. Results of this proof-of-concept study suggest that a larger trial, powered to detect differences at 1 month, is warranted. Participants found the intervention easy, helpful and minimally distressing. By translating emerging neuroscientific insights and experimental research into the real world, we offer a promising new low-intensity psychiatric intervention that could prevent debilitating intrusive memories following trauma
    corecore